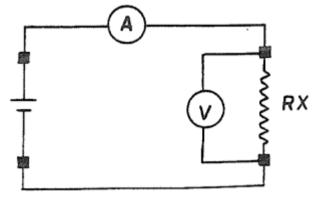
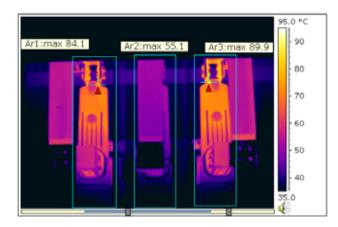


Diagnóstico das condições operativas de disjuntores alimentadores de bancos de capacitores com a termografia infravermelha


Alexsandro Teixeira Gomes


PN/MT – Gerência de Planejamento e Engenharia de Manutenção da Transmissão CEMIG Geração e Transmissão S.A.

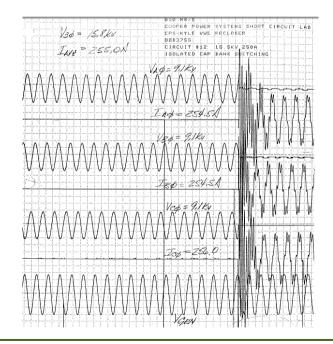
Objetivo

Apresentar a correlação entre a medição da resistência elétrica de contatos e a termografia infravermelha no diagnóstico das condições operativas de disjuntores alimentadores de bancos de capacitores, para estabelecimento de limites operacionais para esses equipamentos.

Chaveamento de bancos de capacitores

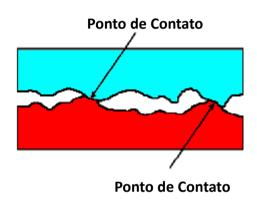
Atualmente na área de Transmissão da CEMIG os bancos de capacitores são chaveados em média de 1 a 2 vezes por dia, e a cada operação de energização estão associados fenômenos transitórios que envolvem correntes que podem atingir valores dezenas ou centenas de vezes superiores à corrente nominal do banco, e sobretensões que podem atingir valores de até 2 pu.

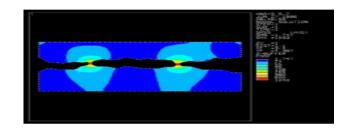
As correntes associadas ao fenômeno de energização apresentam ainda frequência de oscilação que dependem da configuração do sistema e podem atingir valores centenas de vezes superiores à frequência de operação do sistema em regime permanente.


A ação de desenergização dos bancos de capacitores também pode dar origem a fenômenos transitórios cujas sobretensões podem atingir até 3 pu, embora os equipamentos de manobra sejam especificados de forma que tais eventos não ocorram.

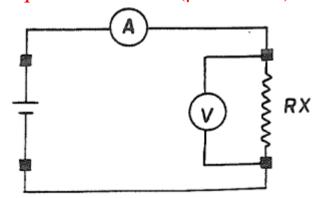
Esse tipo de chaveamento causa ao disjuntor um desgaste muito severo, e, dessa forma faz-se necessário um controle de manutenção eficiente e ao mesmo tempo econômico.

- Corrente nominal capacitiva.
- Corrente transitória nominal de energização (inrush).
- Frequência nominal corrente transitória de energização.
- Suportar o regime de trabalho.


Ensaios de campo em disjuntores:

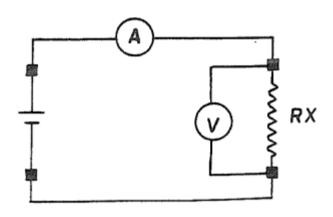

- Medição do Tempos de Operação.
- Análise do deslocamento/velocidade dos contatos móveis.
- Resistência elétrica (ôhmica) dos contatos.
- Resistência dinâmica dos contato.
- Isolamento: CC e CA.
- Qualidade do gás SF6.
- Termografia.
- Etc.

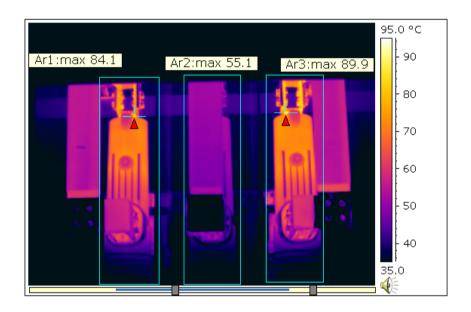
Ensaios: Resistência Elétrica do Contatos:


Resistência Elétrica de Contatos:

Medição da Resistência Elétrica de Contatos:

• Método da queda de tensão ($\mu\Omega$ e m Ω).




100A cc

THE PARTY OF THE P

Ensaios: Termo grafia

Por que?

Ainda que os bancos de capacitores e os equipamentos de manobra sejam projetados pelos fabricantes de forma a suportar as operações de chaveamento, tem-se verificado na CEMIG desempenho insatisfatório de certos equipamentos utilizados em subestações de transmissão.

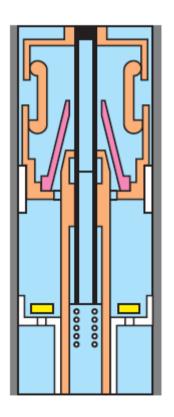
Em particular serão apresentados casos em que disjuntores à SF6 de 17,5kV e 2000A de capacidade nominal tem apresentado durabilidade elétrica insuficiente quando submetidos a chaveamentos de bancos de capacitores de 28,8Mvar e 13,8kV em torno de 3.000 operações, que está abaixo do valor especificado pela CEMIG (5.000) e garantido pelo fabricante (5.000 - curva), apresentando aquecimento devido ao aumento da resistência de contato em função do desgaste nas operações.

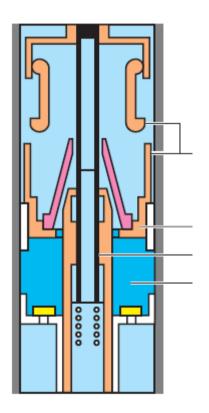
Nesse trabalho será apresentado o uso da termografia infravermelha e da resistência elétrica de contatos para diagnóstico das condições operativas desses disjuntores.

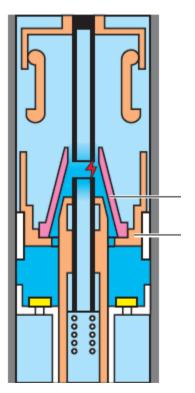
Estudo de caso: Disjuntor de 17,5kV e 2000A

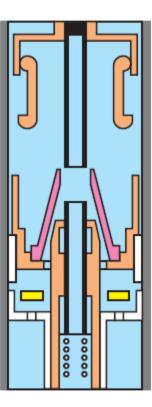
Disjuntor:

Estudo de caso: Disjuntor de 17,5kV e 2000A

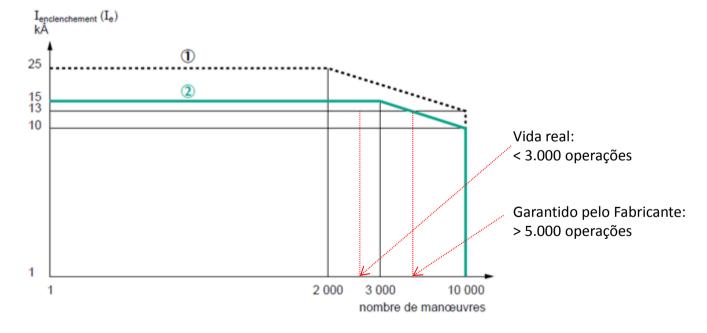

Funcionamento de uma câmara de extinção similar:




Estudo de caso: Disjuntor de 17,5kV e 2000A



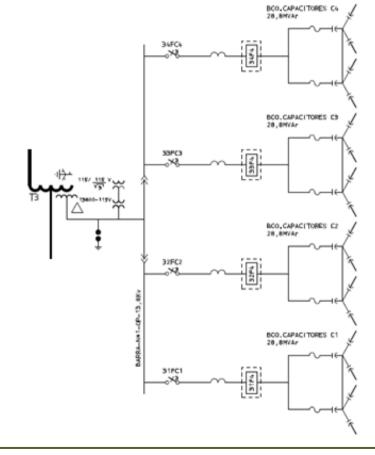
Funcionamento do disjuntor:

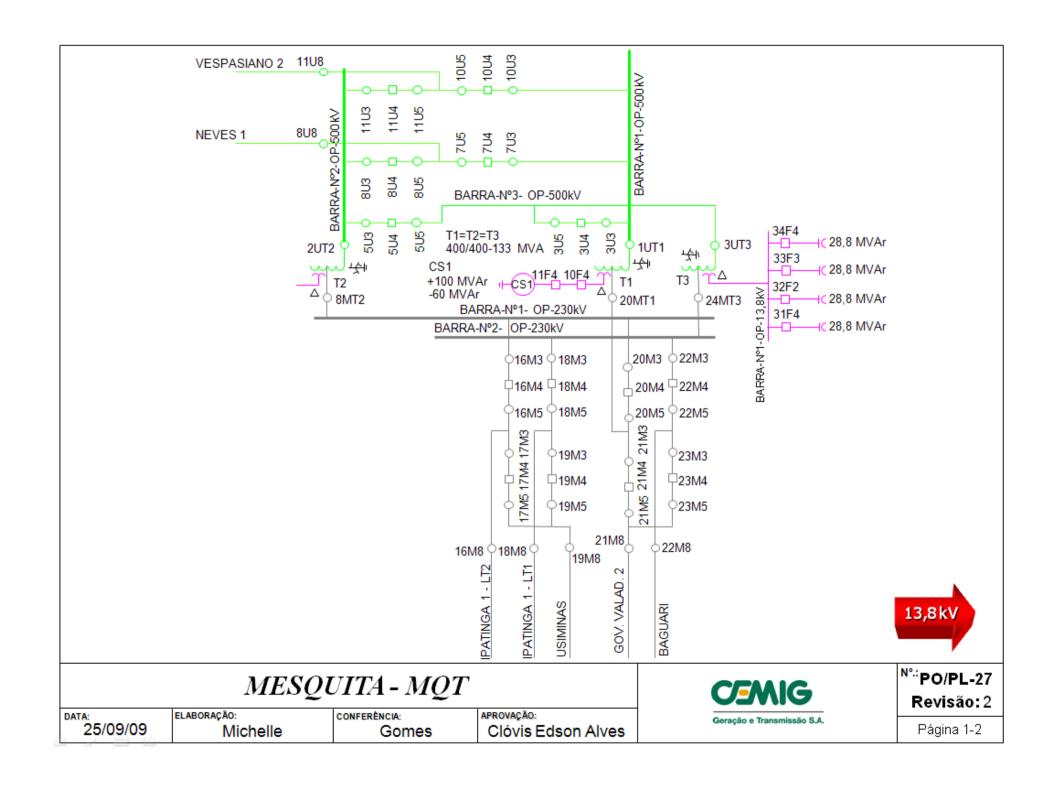


Estudo de caso: Disjuntor de 17,5kV e 2000A

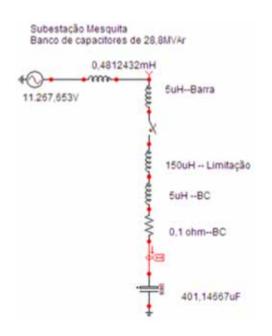
Característica do disjuntor:

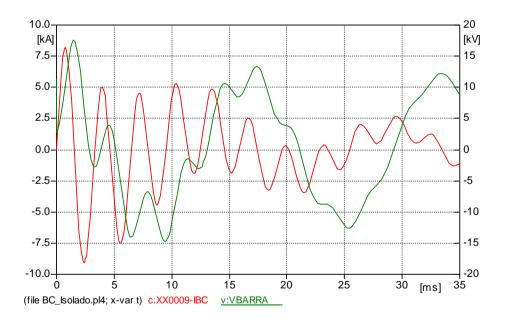
Tensão Nom. (kV)	Corrente Nom. (A)	Corr. Inter. Simét. (kA)
24,0	2000	40


Requisito de durabilidade elétrica do fabricante


Estudo de caso: Disjuntor de 17,5kV e 2000A

Subestação Mesquita: 4 Bancos de Capacitores de 28,8Mvar (1200A), conectados via indutância fixa de 150µH em um barramento de 13,8 kV, autotransformador de 300MVA, 500/230-13,8kV, cuja corrente de curto circuito no terciário é 43.916 A. 115,2MVAr Conectados no terciário do transformador.





Estudo de caso: Disjuntor de 17,5kV e 2000A

Subestação Mesquita: Energização dos bancos de capacitores de 28,8 Mvar em 13,8 kV isolado; Subestação Mesquita CEMIG, com reator fixo, tensão máxima e carga inicial zero; corrente de inrush: 9.051,6 A, freqüência natural: 314,78 Hz e corrente de regime: 1.200 A.

Estudo de caso: Disjuntor de 17,5kV e 2000A

Subestação Mesquita: Energização do bancos de capacitores de 28,8 Mvar em 13,8 kV em back-to-back; Subestação Mesquita CEMIG, com reator fixo, tensão máxima e carga inicial zero; corrente de inrush: 13.614 A, freqüência natural: 634,37 Hz e corrente de regime: 1.200 A.

Estudo de caso: Disjuntor de 17,5kV e 2000A

MS/QL - Jatobá 19 e 20/12/2006

Corrente do Ensaio: 2000A - Monofásico

Ensaio na Fase B - Polo número: Z11085

Localização	Horário 11:00	ΔT	11:30	ΔT	12:00	ΔT	12:30	ΔT	13:00	ΔT	13:30	ΔT	14:00	ΔT	14:30	ΔT	15:00	ΔT
Polo Fase B Conexão Superior	80	56	93,3	69,3	92,4	68,4	93	69	93,3	68,8	94,3	69,7	94,7	69,8	94,9	70	95,2	70,2
Polo Fase B Conexão Inferior	71	47	86,7	62,7	90	66	93	69	97	72,5	99,5	74,9	102,3	77,4	104,1	79,2	105,7	80,7
Superficie Externa Polo Fase B	65	41	71,1	47,1	71,6	47,6	72,4	48,4	73	48,5	73,7	49,1	74	49,1				
Temperatura Ambiente	24		24		24		24		24,5		24,6		24,9		24,9		25	

Resistência de Contato à Frio antes do Aquecimento Resistência de Contato à Quente após Aquecimento Resistência de Contato à Frio após do Aquecimento Resistência de Contato à Frio após 10 manobras

893 μΩ					
44 μΩ					
54 μΩ					
8 μΩ					

Medida Realizada com 100Acc

Ensaio na Fase A - Polo número: Z11083

Localização	Horário	16:00	ΔT	16:30	ΔT	17:00	ΔT	17:30	ΔT	18:00	ΔT
Polo Fase A Conexão Superior		57,7	31,9	63,5	37,7	62,3	36	64,9	38,1	64,8	38,1
Polo Fase A Conexão Inferior		57,9	57,9	63,4	37,6	63,4	37,1	63,2	36,4	63,4	36,7
Superficie Externa Polo Fase A		41,2	15,4	48	22,2	48,2	21,9	48,9	22,1	49,2	22,5
Temperatura Ambiente		25,8		25,8		26,3		26,8		26,7	

Resistência de Contato à Frio antes do Aquecimento Resistência de Contato à Quente após Aquecimento Resistência de Contato à Frio após do Aquecimento Resistência de Contato à Frio após 10 manobras

17 μΩ
15 μΩ
14 μΩ
2 μΩ

Medida Realizada com 100Acc

Ensaio na Fase C - Polo número: Z11087

Localização	Horário	10:40	ΔT	11:10	ΔT	11:40	ΔT	12:10	ΔT	12:40	ΔT	13:10	ΔT
Polo Fase C Conexão Superior		88	62,2	86,5	60,6	85,4	59,4	84,9	58,9	84,1	58,1	83,6	57,5
Polo Fase C Conexão Inferior		78,8	78,8	78,6	52,7	78,2	52,2	78	52	77,3	51,3	77,3	51,2
Superficie Externa Polo Fase C		66	40,2	65,1	39,2	64,9	38,9	64,5	38,5	64,2	38,2	63,7	37,6
Temperatura Ambiente		25,8		25,9		26		26		26		26,1	

Resistência de Contato à Frio antes do Aquecimento Resistência de Contato à Quente após Aquecimento Resistência de Contato à Frio após do Aquecimento Resistência de Contato à Quente após 10 manobras

430 μΩ
47μΩ
não realiz.
99 μΩ

Medida Realizada com 100Acc

SE Mesquita, disjuntor 31F4, ensaio de elevação de temperatura* em 20/12/2006

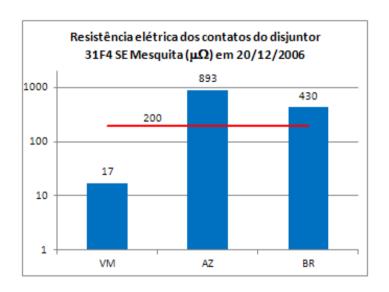
*IEC 60694 Common specifications for high-voltage switchgear and controlgear standards

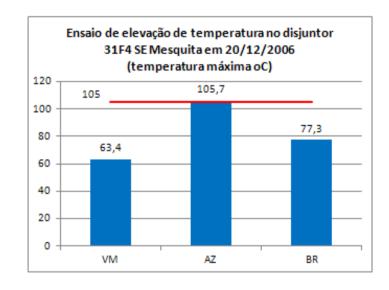
NBR IEC 60694 Especificações comuns para normas de equipamentos de manobra de altatensão e mecanismos de comando

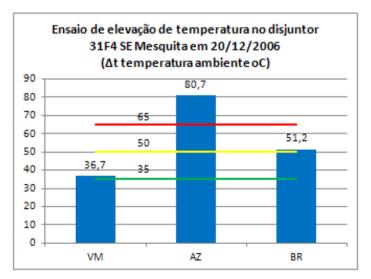
Tabela 3 — Limites de temperatura e elevação de temperatura para diferentes partes, materiais e dielétricos de equipamentos de manobra de alta-tensão e mecanismo de comando

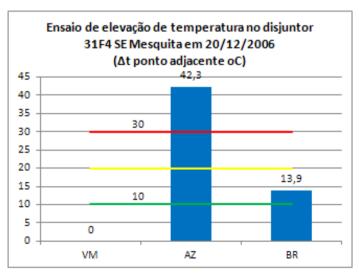
		Valor máximo							
	Natureza da parte, do material e do dielétrico (Ver pontos 1, 2, 3) (ver nota)	Temperatura	Elevação de temperatura para uma temperatura ambiente não excedendo 40°C						
		°C	K						
1	Contatos (ver ponto 4)								
	Cobre nu ou liga de cobre nu								
	- no ar	75	35						
	- no SF ₆ (ver ponto 5)	105	65						
	- no óleo	80	40						
	Prateados ou niquelados (ver ponto 6)	A 95.70	Van						
	- no ar	105	65						
	- no SF ₆ (ver ponto 5)	105	65						
	- no óleo	90	50						
	Estanhados (ver ponto 6)								
	- no ar	90	50						
	- no SF ₆ (ver ponto 5)	90	50						
	- no óleo	90	50						

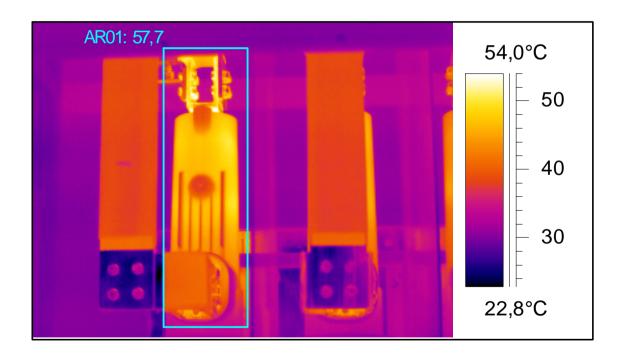
Estudo de caso: Disjuntor de 17,5kV e 2000A

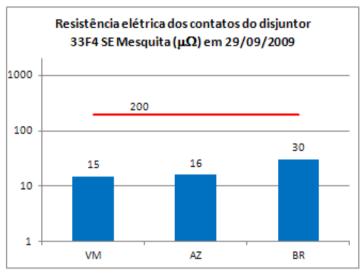


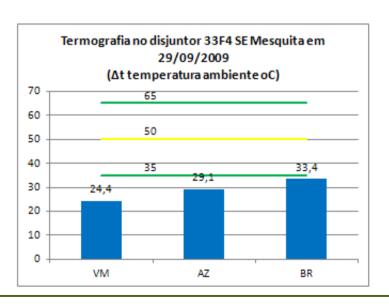

NBR IEC 60694 Especificações comuns para normas de equipamentos de manobra de altatensão e mecanismos de comando

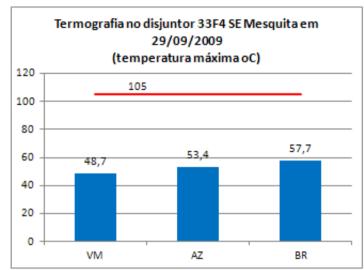

Tabela 3 — Limites de temperatura e elevação de temperatura para diferentes partes, materiais e dielétricos de equipamentos de manobra de alta-tensão e mecanismo de comando

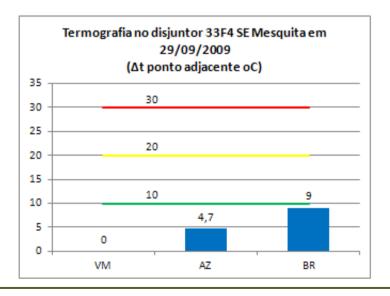

	Valor máximo							
Natureza da parte, do material e do dielétrico (Ver pontos 1, 2, 3) (ver nota)	Temperatura	Elevação de temperatura para uma temperatura ambiente não excedendo 40°C						
	°C	K						
2 Conexões, aparafusadas ou equivalente (ver ponto 4)								
Cobre nu, liga de cobre nu ou liga de alumínio nu								
- no ar	90	50						
- no SF₀ (ver ponto 5)	115	75						
- no óleo	100	60						
Prateadas ou niqueladas (ver ponto 6)								
- no ar	115	75						
- no SF₀ (ver ponto 5)	115	75						
- no óleo	100	60						
Estanhadas								
- no ar	105	65						
- no SF ₆ (ver ponto 5)	105	65						
- no óleo	100	60						

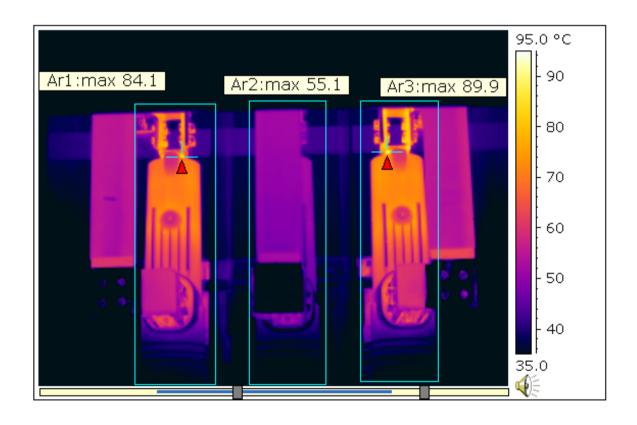


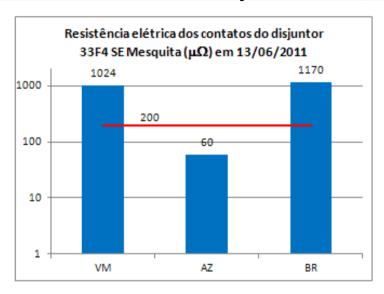

Estudo de caso: Disjuntor de 17,5kV e 2000A

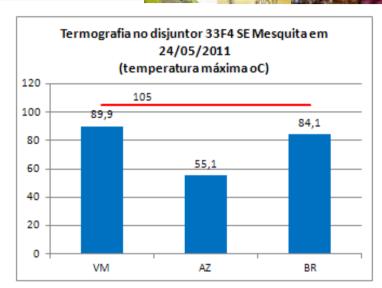


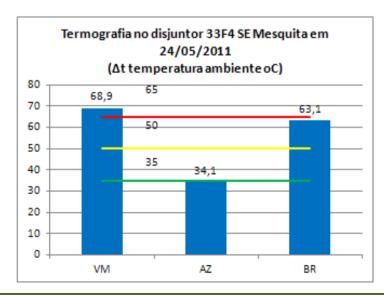

SE Mesquita, Disjuntor 33F4, Situação normal, 29/09/2009

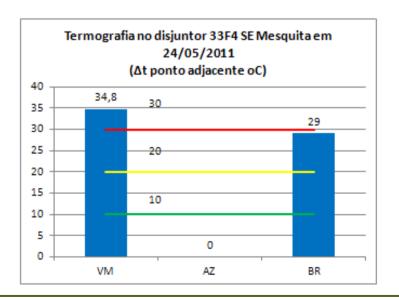





Estudo de caso: Disjuntor de 17,5kV e 2000A




SE Mesquita, Disjuntor 33F4, Anomalia, 24/05 e 13/06/2011



Estudo de caso: Disjuntor de 17,5kV e 2000A

Estudo de caso: Disjuntor de 17,5kV e 2000A

SE Mesquita, Disjuntor 33F4, Anomalia, 24/05 e 13/06/2011

Inspeção no disjuntor:

Estudo de caso: Disjuntor de 17,5kV e 2000A

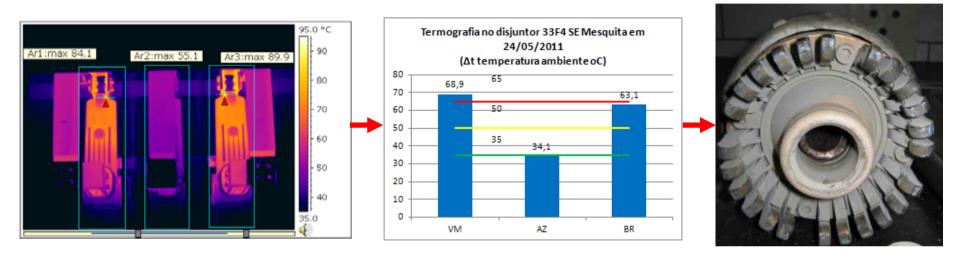
SE Mesquita, Disjuntor 33F4, Anomalia, 24/05 e 13/06/2011

Inspeção no disjuntor:

Estudo de caso: Disjuntor de 17,5kV e 2000A

SE Mesquita, Disjuntor 33F4, Anomalia, 24/05 e 13/06/2011

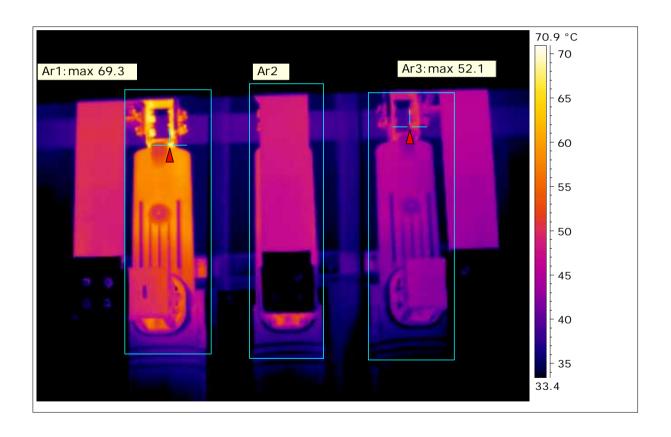
Inspeção no disjuntor:



O aumento da resistência de contato é devido principalmente a impregnação dos resíduos da decomposição do gás SF6 nos contatos do disjuntor.

Conclusões:

A termografia infravermelha se mostrou bastante eficaz no diagnóstico das condições operativas de disjuntores alimentadores dos bancos de capacitores.


Os limites operacionais estabelecidos para elevação de temperatura em relação à temperatura ambiente se alinharam com segurança aos requisitos operacionais de projeto dos disjuntores (norma):

- Δt ≤ 35oC → Condição normal de operação.
- 35oC $< \Delta t \le 50oC \rightarrow$ Criticidade Nível 1.
- 50oC < $\Delta t \le 65oC \rightarrow Criticidade Nível 2$.
- Δt > 65oC → Fim de vida da câmara de extinção/disjuntor.

Termograma estudo

Obrigado!

Alexsandro Teixeira Gomes

alexsandro.teixeira@cemig.com.br

(31)-3506.4428 - (31)-8675.6188

CEMIG Geração e Transmissão S.A.

PN/MT – Gerência de Planejamento e Engenharia de Manutenção da Transmissão av. Barbacena, 1200 - 13º andar - ala B2, Santo Agostinho, Belo Horizonte - MG, CEP 30.190-131